A one dimensional manifold is of cohomological dimension $2$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Strict Cohomological Dimension of Higher Dimensional Local Fields

In this paper, we determine the strict cohomological dimension of higher dimensional local fields.

متن کامل

Cohomological Dimension of Markov Compacta

We rephrase Gromov’s definition of Markov compacta, introduce a subclass of Markov compacta defined by one building block and study cohomological dimensions of these compacta. We show that for a Markov compactum X, dimZ(p) X = dimQ X for all but finitely many primes p where Z(p) is the localization of Z at p. We construct Markov compacta of arbitrarily large dimension having dimQ X = 1 as well ...

متن کامل

Cohomological Approach to Asymptotic Dimension

We introduce the notion of asymptotic cohomology based on the bounded cohomology and define cohomological asymptotic dimension asdimZ X of metric spaces. We show that it agrees with the asymptotic dimension asdimX when the later is finite. Then we use this fact to construct an example of a metric space X of bounded geometry with finite asymptotic dimension for which asdim(X × R) = asdimX. In pa...

متن کامل

Cohomological Dimension Theory of Compact Metric Spaces

0. Introduction 1 1. General properties of the cohomological dimension 2 2. Bockstein theory 6 3. Cohomological dimension of Cartesian product 10 4. Dimension type algebra 15 5. Realization theorem 19 6. Test spaces 24 7. Infinite-dimensional compacta of finite cohomological dimension 28 8. Resolution theorems 33 9. Resolutions preserving cohomological dimensions 41 10. Imbedding and approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0394632-2